

LENTIS®

Comfort

The EDOF-IOL Pioneer

COMFORT WITHOUT COMPROMISE

Distance Zone

- For excellent distance vision ^{1,2}
- Optimal focusing of light rays

Special Central Zone Design

Enables the visual axis passing a clear zone

Narrow Edge Profile

 Incorporating a seamless central optical zone

Power Zone

Providing increased intermediate vision

Advanced Optical Design

Classic and innovative optical principles achieve multiple superior effects

- Extended depth of focus
- Refractive design
- High contrast sensitivity

Extended Depth of Focus (EDOF) **Intraocular Lens**

LS-313 MF15

- Segmental refractive design, addition power: +1.5D
- Continuous clear distance and intermediate vision 1,2
- High light transmission, almost no glare effect ³
- High Contrast Sensitivity 1
- Wide Focal Range

HydroSmart® IOL

- Designed to reduce chromatic aberration ^{4,5}
- Hydrophobic surface properties

Micro-Cutting Edge Technology

- One-step lens manufacturing
- High processing precision

Unique Design

- Asymmetric EDOF design
- Plate-style haptics with four-point support
- Resists capsular bag contraction
- Excellent stability ^{2, 6}

Rear surface design with 360° continuous sharp edge 7

- Designed to create a barrier between lens and posterior capsule
- Designed to reduce Posterior Capsule Opacification (PCO) 8,9

Advanced Technology of EDOF Intraocular Lenses

LENTIS® Comfort can achieve clear, continuous distance-to-intermediate vision with extended depth of field 10, 11

Implanting LENTIS® Comfort MF15 can provide an excellent continuous vision range from distant to intermediate distances, as well as functional near vision. 12

LENTIS® Comfort with +1.5D addition, blending distance and intermediate focus, achieving EDOF effect 10, 11

The lens brings distance and intermediate focal points closer together, creating a continuous focal range that provides clear distant and intermediate vision, achieving the EDOF effect.

High contrast Sensitivity 1

Contrast sensitivity of LENTIS® Comfort lens compared to monofocal lenses at different spatial frequency shows no significant difference, providing patients with high contrast sensitivity.

Almost no glare, light scenes, and other abnormal light interference 13

Providing Excellent Distant and increased Intermediate Vision¹²

Offering a solution for cataract patients' daily life visual needs

LENTIS® Comfort extended depth of focus intraocular lens uses a patented refractive EDOF design, providing excellent distant and increased intermediate vision. This meets the vision requirements of most cataract patients and is particularly important for patients seeking comfortable, natural vision - such as for cooking, shopping, computer use, driving, and sports activities.

LENTIS® Comfort can provide:

- Extended depth of focus
- Good life-quality vision

- Excellent distant and intermediate vision ^{1,2}
- High contrast sensitivity ¹
- Visual quality comparable to monofocal IOL, with a wider vision range than traditional monofocal lenses

Standard monofocal IOL

Good distance vision Reading glasses and varifocals necessary

Illustrative image to simulate expected and potential outcome

Segmental EDOF IOL: LENTIS® Comfort

Illustrative image to simulate expected and potential outcome

Suitable for Patients with Different Eye Conditions

Super Wide Optical Power Range

LENTIS® Comfort and LENTIS® Comforttoric are premium intraocular lenses (IOLs) that treat both cataracts and presbyopia. The LENTIS® Comforttoric additionally corrects astigmatism.

Parameters	LENTIS® Comfort MF15	LENTIS® Comfort MF15T0-T6
Туре	Foldable one-piece acrylic IOL	Foldable one-piece acrylic IOL
Optic Size Overall Length	6.0 mm 11.0 mm	6.0 mm 11.0 mm
Haptic Angulation	0°	0°
Optic Design	- Dioptres: Convex-concave + Dioptres: Biconvex Aspherical surface - posterior, sector-shaped near vision segment - anterior: +1.5 D	Biconvex Aspherical and toric surface -posterior, sector-shaped near vision segment - anterior: +1.5 D
IOL Design	Plate haptic Optic and haptics with square edges, posterior 360° continuous barrier effect	Plate haptic Optic and haptics with square edges
Material	HydroSmart® - a copolymer, consisting of acrylates with hydrophobic properties, UV absorbing	HydroSmart® - a copolymer, consisting of acrylates with hydrophobic properties, UV absorbing
Available Diopters	-10.0 D to -1.0 D (1.0 D) ±0.0 D to +36.0 D (0.5 D)	SE: +10.0 D to +30.0 D (0.5 D) Cyl.: T0 +0.75 D T1 +1.5 D T2 +2.25 D T3 +3.0 D T4 +3.75 D T5 +4.5 D T6 +5.25 D
Refractive Index	1.46	1.46
A constant (nominal)	118.0	118.0

Source: IOLcon.org

Please note that neither Teleon nor IOLcon can be held responsible for correctly specifying the optimized A constants for the Zeiss IOLMaster. The specified constants are therefore to be seen as a guide value and starting point for calculating the IOL refractive power

References:

- 1. Emilio Pedrotti, Rodolfo Mastropasqua, Jacopo Bonetto, Christian Demasi, Francesco Aiello, Carlo Nucci, Cesare Mariotti, Giorgio Marchini. Quality of vision, patient satisfaction and long-term visual function after bilateral implantation of a low addition multifocal intraocular lens. Int Ophthalmol, 2018; 38(4):1709-1716.
- Tetsuro Oshika, Hiroyuki Arai, Yoshifumi Fujita, Mikio Inamura, Yasushi Inoue, Toru Noda & Kazunori Miyata. One-year clinical evaluation of rotationally asymmetric multifocal intraocular lens with +1.5 diopters near addition. Scientific Reports; 2019, 9:13117.
- 3. Auffarth G U (2011) Optical side-effects of presbyopia-correcting IOLs and corneal procedures; Dept. of Ophthalmology, Ruprecht-Karls-University Heidelberg
- Salvá, L.; García, S.; García-Delpech, S.; Martínez-Espert, A.; Montagud-Martínez, D.; Ferrando, V. Comparison of the Polychromatic Image Quality of Two Refractive-Segmented and Two Diffractive Multifocal Intraocular Lenses. J. Clin. Med. 2023, 12, 4678.
- 5. Zhao H, Mainster M A. The effect of chromatic dispersion on pseudophakic optical performance[J]. British journal of ophthalmology, 2007, 91(9): 1225-1229
- Borkenstein A F, Borkenstein E M. Clinical Performance of New Enhanced Monofocal Intraocular Lenses: comparison of Hydrophobic C-loop and Hydrophilic Plate-Haptic Platform[J]. Advances in Therapy, 2023, 40(10): 4561-4573.
- 7. Werner L, MD, PhD. Intraocular Lenses Overview of Designs, Materials, and Pathophysiologic Features. Ophthalmology, 2021, Volume 128, Issue 11, E74-E93.
- H. Höh, C. Stylianides, U. Holland. Nachstarquote der MICS-Linse L-313. 32. Kongress der Deutschsprachigen Gesellschaft für Intraokularlinsen-Implantation, Interventionelle und Refraktive Chirurgie, 2018, 271-290.
- Christoforos S, Helmut H, Holland U. Posterior capsule opacification (PCC) rate of a hydrophilic acrylic intraocular lens suitable for microincisional cataract surgery (MICS)[J]. Medicine and Clinical Science, 2020, 2(3): 1-9
- 10. Jorge L. Alio, MD, PhD, Ana B. Plaza-Puche, MSc, Raul Montalban, MSc, Jaime Javaloy, MD, PhD. Visual outcomes with a single-optic accommodating intraocular lens and a low-addition-power rotational asymmetric multifocal intraocular lens. J Cataract Refract Surg 2012; 38:978-985
- 11. Vounotrypidis E, Diener R, Wertheimer C, et al. Bifocal nondiffractive intraocular lens for enhanced depth of focus in correcting presbyopia: Clinical evaluation[J]. Journal of Cataract & Refractive Surgery, 2017, 43(5): 627-632.
- 12. Song, Xiaohui MD; Liu, Xin MD; Wang, Wei MD; Zhu, Yanan MD; Qin, Zhenwei MD; Lyu, Danni MD; Shentu, Xingchao MD; Xv, Wen MD; Chen, Peiging MD; Ke, Yao MD. Visual outcome and optical quality after implantation of zonal refractive multifocal and extended-range-of-vision IOLs: a prospective comparison. Journal of Cataract and Refractive Surgery, 2020, 46(4):540-548
- 13. Presentation at ESCRS 2018 & 2024, Dr. P. Versace
- 14. Presentation at ESCRS 2024, Dr. N. Azmi

Revision: QF2697v1 MANUFACTURER:

Teleon Surgical B.V. | Van Rensselaerweg 4 b | NL - 6956AV Spankeren

marketing@teleon-surgical.com

SALES SWITZERLAND AND AUSTRIA: _

mediconsult Mediconsult AG | Frohheimstrasse 2 | CH-9325 Roggwil TG | Tel. +41 71454 7020

